Discovery of smallpox therapeutics that target processive DNA synthesis

Robert Ricciardi

Abigail M. Druck Shudofsky Janice Elaine P. Young Mihai Ciustea

University of Pennsylvania

Smallpox (SP) Facts:

SP has killed hundreds of millions.
SP is caused by the virus, *Variola*.

Smallpox (SP) Facts:

SP was globally eradicated by vaccination in 1980.

SP declared stocks exist in the USA and Russia.

SP undeclared stocks pose a health threat.

Time Course of SP Infection:

Asymptomatic viremia. Only time that administration of vaccine will be effective.

Rash, fever, infectious spread saliva and clothing

1-4 7-17

17-19

Days post infection

pustulates

Our goal is to discover and develop therapeutics

that target the

Polymerase/Processivity complex of

vaccinia virus

The therapeutics are intended to:

Directly block Variola virus in rapid response to smallpox attack.

Protect individuals for whom the vaccine is contraindicated.

Processivity Factors

 Stabilize DNA polymerases on the template to enable extended strand synthesis

Essential for viral replication

Specific for their own polymerase

Identifying vaccinia proteins

required for processive

DNA synthesis

Vaccinia Processive DNA synthesis

DNA polymerase E9 incorporates ten nucleotides before dissociating from the template.

E9 alone is nonprocessive: short chains are synthesized

Nucleotide Incorporation of E9 alone

1 – Negative control

2 – Negative control

3 - E9

Vaccinia Processive DNA synthesis

Together with its processivity factor, E9 incorporates thousands of nucleotides.

This extended strand synthesis is called processive DNA synthesis, or processivity.

Discovering vaccinia proteins required for processive DNA synthesis

- E9 replicative DNA polymerase
- **A20** putative processivity factor
- **D4** uracil DNA glycosylase
- **D5** DNA-independent dNTPase
- **B1** serine/threonine protein kinase
- **H5** substrate of B1 present in the virosomes
- A49 protein that interacts with H5

E9, A20 and D4 are required for processive DNA synthesis

← 7,000 nt

A20, D4, and E9 are essential members of the vaccinia processivity complex

Non-processive

Processive

The vaccinia proteins A20, D4 and E9 share high sequence identity to their corresponding proteins in variola ...

A20 identity = 98%

Vaccinia MTSSADLTNLKELLSLYKSLKFSDSAAIEKYNSLVEWGTSTYWKIGVQKVANVETSISDY Variola MTSSADLTNLKELLSLYKSLRFSDSAAIEKYNSLVEWGTSTYWKIGVOKVANVETSISDY YDEVKNKPFNIDPGYYIFLPVYFGSVFIYSKGKNMVELGSGNSFQIPDDMRSACNKVLDS **Vaccinia** Variola YDEVKNKPFNIDPGYYIFLPVYFGSVFIYSKGKNMVELGSGNSFQIPDDMRSVCNKVLDG **Vaccinia** DNGIDFLRFVLLNNRWIMEDAISKYQSPVNIFKLASEYGLNIPKYLEIEIEEDTLFDDEL **DNGIDFLRFVLLNNRWIMEDAISKYQSPVNIFKLASEYGLNIPNYLEIEIEEDTLFDDEL** Variola **Vaccinia** YSIIERSFDDKFPKISISYIKLGELRRQVVDFFKFSFMYIESIKVDRIGDNIFIPSVITKSGKKI Variola YSIIERSFDDNFPKISISYIKLGELRRQVVDFFKFSFMYIESIKVDRIGDNIFIPSVITKSGKKI Vaccinia Variola **Vaccinia** FSKVGSAGLKQLTNKLDINECATVDELVDEINKSGTVKRKIKNQSAFDLSRECLGYPEA Variola FSKVGSAGLKQLTNKLNINECTTVDELVDEINKSGTVKRKIKTQSAFDLSRECLGYPEA **Vaccinia** Variola

D4 identity = 97%

Vaccinia MNSVTVSHAPYTITYHDDWEPVMSQLVEFYNEVASWLLRDETSPIPDKFFIQLKQPLRNK

Variola MNSVTVSHAPYTITYHDDWEPVMNQLVEFYNEVASWLLRDETSPIPDKFFIQLKQPLRNK

Vaccinia RVCVCGIDPYPKDGTGVPFESPNFTKKSIKEIASSISRLTGVIDYKGYNLNIIDGVIPWN

Variola RVCVCGIDPYPKDGTGVPFESPNFTKKSIKEIASSISRLTGVIDYKGYNLNIIDGVIPWN

Vaccinia YYLSCKLGETKSHAIYWDKISKLLLQHITKHVSVLYCLGKTDYSNIRAKLESPVTTIVGY

Variola YYLSCKLGETKSHAIYWDKISKLLLHHITKHVRFLYCLGKTDFSNIRAKLESPVTTIVGY

Vaccinia HPAARDRQFEKDRSFEIINVLLELDNKAPINWAQGFIY

Variola HPAARDRQFEKDRSFEIINVLLELDNKAPINWAQGFIY

E9 identity = 98%

Vaccinia MDVRCINWFESHGENRFLYLKSRCRNGETVFIRFPHYFYYVVTDEIYQSLSPPPFNARPLGKMRTIDIDETI MDVRCINWFESHGENRFLYLKSRCRNGETVFIRFPHYFYYVVTDEIYQSLAPPPFNARPMGKMRTIDIDETI Variola Vaccinia SYNLDIKDRKCSVADMWLIEEPKKRSIQNATMDEFLNISWFYISNGISPDGCYSLDEQYLTKINNGCYHCDD Variola **Vaccinia** Variola GCLRIQSLMEMDYERELVLCSEIVLLRIAKQLLELTFDYVVTFNGHNFDLRYITNRLELLTGEKIIFRSPDKKE **Vaccinia** Variola GCLRIQSLMEMDYERELVLCSEIVLLQIAKQLLELTFDYIVTFNGHNFDLRYITNRLELLTGEKIIFRSPDKKE **Vaccinia** Variola VREMTFIGDDTTDAKGKAAAFAKVLTTGNYVTVDEDIICKVIRKDIWENGFKVVLLCPTLPNDTYKLSFGKD **Vaccinia** MTFIGDDTTDAKGKAAVFAKVLTTGNYVTVDD -IICKVIHKDIWENGFKVVLSCPTLTI Variola DVDLAQMYKDYNLNIALDMARYCIHDACLCQYLWEYYGVETKTDAGASTYVLPQSMVFEYRASTVIKGPL **Vaccinia** DVDLAQMYKDYNLNIALDMARYCIHDACLQQYLWEYYGVETKTDAGASTYVLPQSMVFEYKA Variola **Vaccinia** Variola **Vaccinia** Variola **Vaccinia** YDSMQYTYKIVANSVYGLMGFRNSALYSYASAKSCTSIGRRMILYLESVLNGAELSNGMLRFANPLSNPF\ Variola **Vaccinia** MDDRDINPIVKTSLPIDYRFRFRSVYGDTDSVFTEIDSQDVDKSIEIAKELERLIN\RVLFNNFKIEFEAVYK Variola MDDRDINPIVKTSLPIDYRFRFRSVYGDTDSVFTEIDSQDVDKSIEIAKELERLINSRVLFNNFKIEFEAVYK **Vaccinia** Variola Vaccinia Variola Vaccinia ANVPWTKKLVNIKTYETIIDRSFKLGSDQRIFYEVYFKRLTSEIVNLLDNKVLCISFFERMFGSKPTFYEA ANVPWTKKLVNIKTYETIIDRSFKLGSDQRIFYEVYFKRLTSEIVNLLDNKVLCISFFERMFGSRPTFYEA

... which makes them excellent targets for therapeutics against smallpox.

High-throughput screening of

52,000 compounds

to identify inhibitors

52,000 Compounds

26 Inhibitors

The Rapid Plate Assay

Rapid Assay Screening Plate

Non-inhibitor

Select Structural Analogs

R

Viral plaques vs. cell toxicity

Inhibitors	Structure NH ₂	Plaque IC ₅₀	Cytotoxicity IC ₅₀	Therapeutic Index
Cidofovir	но он он	200 uM	50 uM	4
M104	CI	127 u M	10 uM	12.7
M105	HO	> 200 uM	75 uM	> 2.5
M106	S N N N N N N N N N N N N N N N N N N N	_ 159 uM	15 uM	10.6 MARCE

Mechanistic Assays

Catalytic

Processive

Mechanistic Assays

Catalytic

Processive

Mc 101 Mp 107

SUMMARY:

- Discovered processivity proteins of vaccinia virus as therapeutic targets.
- Tested 52,000 chemicals for blocking DNA synthesis by HTS-Rapid Plate Assay.
- Identified 26 hit compounds that reduce infection with minimum cytotoxicity

ONGOING STUDIES to OPTIMIZE the HITS:

- Embarking on medicinal chemistry approach (Su Chiang group, NSRB, Harvard).
- Determine whether inhibitors disrupt A20, D4 and E9 interactions.
- Validate steps of vaccinia infection that are blocked by hits.
- Determine cellular uptake and half-life of inhibitors.
- Determine how inhibitors alter cell gene expression using microarray.

Acknowledgements

- NIH MARCE FUNDING
- NCI Library 2,000 compounds Dr. Robert Shoemaker
- The National Screening Laboratory, Center of Excellence for Biodefense at Harvard Medical School, 50,000 compounds- (Dr. Su Chiang, Assist Director Screening)

Abigail M. Druck Shudofsky Janice Elaine P. Young Mihai Ciustea

- Identifying Proteins
- Assay Design and Small Screen
- High-Throughput Screening

